

quantA Workshop and Conference Funding Application

Event Organization:

Name, Institution and Contact Details of quantA PI: Contact of one organizer through whom all communication will be done: Date and Place of event: Planned number of registered participants: Event website: Main target groups of the event (researchers, postdocs, PhD students etc.): Planned overall costs for the event: Amount asked from quantA: Other sources of funding (please list all other sources):

Content:

quantA research areas that are addressed (see below):

Description of the relevance for quantA and the impact the event has on the quantA community (maximum of 3000 characters):

Is the event open for members of the quantA community? Registration open from until How will quantA be acknowledged before, at and after the event?

Documents that need to be included:

Event program (also tentative), with registration information (may be published via quantA): Cost calculation (as attachment)

Quantum Science Austria

University of Innsbruck | Technikerstrasse 25 | 6020 Innsbruck | Austria +43 512 507-52553 | 🕿 quanta@uibk.ac.at | www.quantumscience.at

xtGenerationEU

universität

1 quantA - Research Areas

2 Quantum nature of space, time, and gravity (STG)

STG 1 – How can we understand genuine quantum concepts in the framework of general and special relativity?

Objective: Combining the theoretical study of conceptual challenges at the gravity-quantum interface with unique high-precision quantum measurements of gravitational and special-relativistic phenomena

STG 2 – How far can we push the quantum-classical border, or how does classicality emerge? Objective: Expanding the parameter regime of controlled complex quantum systems in size, mass and complexity significantly beyond the current state of the art

STG 3 – What is the role of quantum physics regarding the nature and arrow of time?

Objective: Defining the nature of time within the standard quantum framework and determine the degree to which one can measure and manipulate it

3 New paradigms for quantum information science (QIS)

QIS 1 – How can we surpass the capabilities of conventional quantum information processing approaches? Objective: Using higher-dimensional and hybrid systems to develop new paradigms that use quantum and classical resources and other cost factors to their full potential

QIS 2 – How can we efficiently describe and model multipartite quantum systems using a quantum information theoretical perspective?

Objective: Efficiently using novel quantum information theoretical tools to model large quantum systems and their underlying entanglement structure

QIS 3 – How can we optimally harness the resources of hybrid and distributed quantum systems? Objective: Combining the unique capabilities of different platforms to build hybrid quantum networks across Austria

4 Physics of Engineered Quantum Many-Body Systems (MBS)

MBS 1 – How can we create and exploit programmable quantum simulators? Objective: Turning Rydberg atom arrays, ion crystals and superconducting circuits into simulators with new capabilities

MBS 2 – What are the essential quantum many-body phenomena in and out of equilibrium? Objective: Understanding the dynamics and thermalization of coherent many-body systems and finding universal signatures in their non-equilibrium behavior.

MBS 3 – How can we efficiently learn information about quantum many-body systems? Objective: Characterizing the structure and entanglement of large quantum systems and recovering the underlying laws governing the evolution of coherent and open quantum systems

Quantum Science Austria

Funded by the European Union NextGenerationEU